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Abstract

Biomonitoring is a very useful tool for assessing human exposure to environmental pollutants. 

This review discusses recent methods for the quantitative measurement of biomarkers of exposure 

to different classes of chemicals used in personal-care products (e.g., musk fragrances, 

preservatives, UV filters, and insect repellents) and consumer products (e.g., organophosphate 

flame retardants, phthalate esters, perfluorinated compounds, and industrial phenols). The 

measurements are mainly taken in urine, blood, and breast milk. We also discuss the different 

procedures commonly used for sample-pretreatment, extraction, and clean up, and 

chromatographic techniques currently used to determine these compounds. Finally, we present 

data on the main biomarkers occurring in different human specimens.

Keywords

Biomarker; Blood; Breast milk; Emerging pollutant; Flame retardant; Liquid chromatography with 
tandem mass spectrometry (LC-MS/MS); Musk fragrance; Perfluorinated compound; Personal-
care product; Urine

1. Introduction

The potential health effects of industrial chemicals continually introduced into the 

environment and the massive use of personal-care products (PCPs) are subjects of increasing 

concern. In the framework of water and environmental control, some of these chemicals 

have been termed “emerging pollutants.” Many are high-production volume (HPV) 

chemicals. Although not necessarily new, their environmental fate and toxicological effects 
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require additional study and evaluation. Included among these emerging pollutants are a 

diverse group of PCP substances (e.g., UV filters, preservatives and antimicrobials, musk 

fragrances, and insect repellents), and industrial chemicals used in a myriad of consumer 

products [e.g., organophosphate flame retardants (OPFRs), phthalate esters, perfluorinated 

compounds (PFCs), and industrial phenols].

Considerable research has already been devoted to assessing human exposure to emerging 

pollutants, particularly into the occurrence of these chemicals in various environmental 

constituents (e.g., air, water, and food) [1]. Also, important efforts are under way to evaluate 

the presence of these compounds in biological specimens (e.g., urine, blood, and breast 

milk), also known as human biomonitoring (see Fig. 1), Human biomonitoring has become 

an increasingly relevant tool for not only evaluating human exposure to chemicals, but also:

• assessing the potential health risks associated with exposure to these compounds;

• evaluating time trends in concentrations;

• determining whether technological changes can affect human exposure;

• conducting epidemiological studies; and,

• evaluating the efficacy of regulatory actions [2].

When assessing human exposure to environmental chemicals using biomonitoring, 

researchers need to select appropriate biomarkers and human specimens. Biomarkers can be 

the chemical substance itself, its metabolite(s), or the products of interaction between the 

chemical and target biomolecules. Biomarkers of exposure, which link the biomarker 

measured to specific environmental exposures, are most frequently used for the 

biomonitoring of environmental pollutants. Human biomonitoring has been applied in 

different countries as a successful tool in the exposure and risk assessment of pollutants, and 

human biomonitoring has been increasingly integrated into environmental and health 

monitoring [3–6].

Analytical capabilities are at the core of monitoring for emerging contaminants in various 

matrices. Analytical methods currently used for the determination of emerging pollutants in 

environmental compartments have been studied widely; recently, several outstanding critical 

reviews were published [7–9]. But not as much attention has been paid to the analytical 

methods employed for biomonitoring biomarkers of exposure to emerging pollutants.

The primary objective of this review is to survey the most relevant liquid chromatography 

(LC) and gas chromatography (GC) coupled to mass spectrometry (MS) in analytical 

methods published in the past five years. Our review focuses on routine measurement in 

human specimens (mainly urine, blood, and breast milk) of biomarkers of exposure to four 

groups of chemicals used in PCPs and four groups of industrial chemicals used in consumer 

products. We also include other considerations about the occurrence of the most relevant 

biomarkers.
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2. Compounds

Table 1 shows the groups of chemicals used in PCPs and consumer products covered by this 

review. For some of the substances (i.e. synthetic musks, environmental phenols or PFCs), 

the biomarkers are the parent compounds, free or conjugated. However, for OPFRs or 

phthalates, the biomarkers of exposure are metabolites of the parent compound(s). Table 1 

also shows the major sources of exposure to the different substances and the main target 

human specimens.

2.1. Personal-care products

Through the use of PCPs and other household products, humans are continually exposed to 

synthetic musks, preservatives and antimicrobials, sunscreen filters, and insect repellents. 

Dermal contact can be a major route of exposure to these compounds. Synthetic musks, 

which scent a variety products [10], are lipophilic and persistent in the body, so they are 

expected to accumulate in lipid-rich tissues, human milk, and blood. Some studies suggest a 

half-life of several months [11].

Antimicrobials [e.g., triclosan (TCS) and triclocarban (TCC)] can be absorbed across the 

skin into the blood stream and are excreted over several days in bile, feces, and urine. Total 

(free plus conjugated) and conjugated (sulfated and glucuronidated) concentrations of TCS 

and TCC can serve as biomarkers of human exposure to these biocides [12,13].

Apart from dermal exposure, parabens, commonly used preservatives in cosmetics, can 

appear in the body through ingestion because they are also used in some food products. 

Parabens are hydrolyzed to p-hydroxybenzoic acid (a non-specific biomarker) and excreted 

in urine (free or conjugated). They can also be excreted as parent compounds in their free or 

conjugated form (e.g., glucuronidated) [14,15]. Researchers often use the concentration of 

the total urinary species of parent parabens as a specific biomarker of exposure to parabens 

in humans [16].

Sunscreen agent benzophenone-3 undergoes both Phase I and Phase II metabolism, and the 

metabolites are excreted in urine within hours after exposure [17]. The Phase I metabolites 

include BP-1, BP-8 and 2,3,4-trihydroxybenzophenone [18]. BP-3 or any of its metabolites 

can potentially be used as biomarkers of exposure to BP-3 [19].

Insect repellent N,N-diethyl-3-methylbenzamide (DEET) is metabolized in the human body 

and excreted in urine. Although understanding of the DEET metabolism remains 

incomplete, some dealkylated and oxidized metabolites have been described [20–23]. 

Urinary levels of DEET and its metabolites reflect recent exposures.

2.2. Industrial chemicals

After exposure, organophosphorous triesters are hydrolyzed to the corresponding 

dialkylphosphates and diarylphosphates in blood and urine [24].

Copper et al. [25] reported the presence in urine of bis(1,3-dichloro-2-propyl)phosphate 

(BDCPP) and diphenyl phosphate (DPP) – metabolites of OPFRs tris(1,3-dichloro-2-
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propyl)phosphate and triphenyl phosphate, respectively – that could serve as biomarkers of 

exposure to their parent compounds.

Schindler et al. [26] studied the presence in human urine of one chlorinated metabolite, 

bis-2-chlorethylphosphate, and three metabolites with aromatic groups, namely DPP, di-m-

cresyl phosphate, and di-p-cresyl phosphate.

After exposure, phthalates are rapidly metabolized to their respective hydrolytic monoesters. 

For some phthalates, the monoesters can be further transformed to their oxidative products 

as free or conjugated species before excretion [27]. Urinary concentrations of all of these 

phthalate metabolites are used as biomarkers of exposure in urine [4].

PFCs are amphiphilic chemicals that do not accumulate preferentially in adipose tissues, but 

they bind easily to blood proteins and accumulate in the liver and the kidneys [28]. Humans 

appear to have a long half-life (3–5 years) of serum elimination of some PFCs [e.g., 

perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and 

perfluorooctanonate (PFOA)]. For human biomonitoring purposes, PFCs are often measured 

in blood serum and breast milk. Unlike other persistent organic pollutants, PFCs are not 

lipophilic, so their concentrations in breast milk are much lower than in serum.

Apart from the phenols found in PCPs (e.g., triclosan, triclocarban, and BP-3), humans and 

wildlife are exposed to a large variety of other phenolic compounds through the production 

and use of certain industrial products. Bisphenol A (BPA), alkyl phenols, and chlorophenols 

are included among the most common of these environmental phenols.

After exposure, these phenols are metabolized and, after glucuronidation and sulfation in the 

liver, eliminated mainly in urine [29], so human exposure to phenolic compounds can be 

assessed by measuring the total (free and conjugated) compounds in urine [19].

3. Analytical methods

Generally, the quantitative measurement of biomarkers of exposure to organic pollutants in 

human specimens includes a sample-pretreatment step, followed by an extraction and clean-

up process, and finally by a separation and detection method. Table 2 shows a selection of 

relevant analytical procedures proposed in recent literature.

Pre-treatment of biological samples to remove interferences or to hydrolyze the conjugated 

forms of the target biomarkers is often required. For biomonitoring of hydrophilic non-

persistent chemicals (e.g., phenols, parabens, or phthalates), urine is the matrix of choice. 

Many of these chemicals are excreted as urinary glucuronide and sulfate conjugates [52]. 

Deconjugation is usually done by an enzymatic hydrolysis treatment (it can also be an acid 

hydrolysis) to deconjugate selectively glucuronides and/or sulfated conjugates. In many 

cases, the pretreatment is a simple dilution of the urine with water or formic acid. This 

dilution reduces any between-sample matrix variability that could otherwise affect analyte 

recovery.
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Blood and its products (whole blood, plasma, and serum), and breast milk are the matrices 

most widely used for biomonitoring of human exposure to persistent compounds (e.g., 

synthetic musks). To disrupt the protein-compound binding and facilitate (e.g., prevent 

clogging) solid-phase extraction (SPE), researchers commonly use protein precipitation with 

acetonitrile [44], methanol [49] or freeze-drying [31].

3.1. Extraction and clean-up strategies

Although direct analysis of samples or pretreated samples is optimal, additional sample 

clean-up is usually necessary. Extraction and purification strategies range from classic 

liquid-liquid extraction (LLE) to recent developments in the field of miniaturized methods 

[e.g., solid-phase microextraction (SPME)]. LLE is still widely employed for the extraction 

of biomarkers from urine, human milk, and blood. Ethyl acetate, hexane and acetone are the 

most widely employed solvents for the extraction of different biomarkers {e.g., 

benzophenone derivatives [41], phthalates [51], musk fragrances [32] or PFCs [47] in 

biological matrices}.

Guo et al. [48] used an ion-pairing agent to permit the use of a non-polar solvent (e.g., 

methyl-tert-butyl ether) for the extraction of 14 PFCs in human blood. However, LLE is 

time consuming, solvent consuming, and labor intensive.

SPE is one of is the most important sample-preparation approach to extract and to purify 

analytes from liquid matrices (i.e. urine, blood, saliva, and milk), with both off-line and on-

line configurations. Researchers need to select an appropriate SPE sorbent, and to optimize 

elution solvent, sample volume, and pH conditions.

Although some conventional bonded silica sorbents are still in use [18], these are being 

replaced by hydrophilic-hydrophobic balance polymeric material {e.g., Oasis HLB [36] or 

Strata XL [43]}. For polar anionic compounds (e.g., OPFRs and PFCs), weak-anion 

exchange sorbents {e.g., StrataX-AW and Oasis WAX [105]} have proved useful [25]. SPE 

provides better selectivity and higher recoveries, and uses much less solvent than 

conventional LLE. For large-scale biomonitoring and epidemiological studies, high 

throughput with adequate sensitivity is necessary. For this purpose, on-line SPE techniques 

have been proposed [50]. SPE with restricted access materials, which combine both 

reversed-phase separation and size-exclusion mechanisms [54], was used on-line in a 

column-switching configuration for the determination of five parabens and seven 

environmental phenols in serum [35]. Likewise, monolithic materials [55] have been used in 

some online SPE methods for the determination of a wide range of urinary phthalate 

metabolites [52].

Sorptive extraction is based on equilibrium processes between an aqueous sample and a 

sorbent. It includes SPME, stir-bar sorptive extraction (SBSE), and other miniaturized 

techniques that have acquired the generic name of liquid-phase microextraction (LPME) 

[56]. Unlike conventional LLE, LPME reduces the volume of organic solvents used, and has 

been used for the extraction of BPA and other environmental phenols from urine [37].
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For the analysis of solid matrices (e.g., placenta or human breast cancerous tissues), current 

methods involve solid-liquid extraction (SLE) using ethyl acetate for parabens and 

phthalates [44] and acetone:hexane (1:1) [46]. Likewise, pressurized fluid extraction (PFE) 

has been proposed for the quick extraction of synthetic musks [31].

3.2. Determination strategies

As Fig. 2 illustrates, the analytical methods most commonly employed for the determination 

of biomarkers of exposure to environmental pollutants are LC-tandem mass spectrometry 

(LC-MS/MS) and GC-MS. These bio-markers belong to different families of chemicals with 

divergent physicochemical properties, so the choice for using LC or GC depends on the 

polarity, volatility, and thermal stability of the analytes. Whereas musk fragrances, due to 

their high volatility, are GC-amenable compounds, others (e.g., phthalates, parabens or 

PFCs) are generally measured by LC-MS/MS.

Musk fragrances are determined by GC-MS with electron-impact and selected-ion-

monitoring modes. The limits of detection (LODs) are at sub-ng/mL levels. Recently, Hutter 

et al. [11] published a method for measuring 11 synthetic musks in blood using GC-MS with 

negative chemical ionization. The method provides LODs of 0.003–0.062 ng/mL. Likewise, 

Wang et al. [31] reported a GC-MS/MS method for the quantitative determination of 13 

synthetic musks in human milk, with LODs in the range 0.6–5.4 ng/g lipid. A recent 

publication proposed the determination of the six most important synthetic musks by ultra-

performance liquid chromatography (UPLC) coupled to MS/MS with atmospheric pressure 

photoionization (APPI); LODs were <6 pg [57]. Although the method has only been used 

for environmental samples (i.e. PM 2.5), it opens the way for new analytical perspectives on 

the analysis of biological matrices for musks.

LC-MS/MS has become essential to achieve the determination of polar compounds, 

providing wide scope, high sensibility, and good selectivity [58]. Current LC approaches use 

reversed-phase columns. To measure biomarkers of phthalates and OPFR, some authors 

[52,53] proposed the use of stationary phases with phenyl rings that provide special 

selectivity for polar groups. The mobile phases comprise methanol, acetonitrile and water. 

Besides, solvent modifiers {e.g., ammonium acetate (proton acceptor) [48], formic acid [18] 

and acetic acid (proton donors) [34]} are added to enhance ionization efficiencies of the 

target compounds.

Triple quadrupole (QqQ) is the most commonly used analyzer for polar biomarkers of PCPs 

and industrial pollutants (e.g., OPFRs or PFCs). In general, to confirm the findings of the 

target analytes and to avoid false positives, two selected reaction monitoring (SRM) 

transitions per compound are used [59]. Electrospray ionization (ESI) is the most frequently 

used interface for determining phthalate metabolites. Silva et al. [52] reported a multi-

residue method for quantifying 22 phthalate metabolites in urine using online SPE coupled 

to LC-MS/MS working in ESI negative mode, with LODs of 0.2–1.1 ng/mL. Although the 

ESI interface is prone to matrix effects (mainly ion suppression), they reported limited or no 

matrix effects, due to the use of a diluted sample.
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ESI in negative mode is widely used for PFC ionization (see Table 2). Perfluorinated alkyl 

carboxylic acids are well suited to multiple reaction monitoring (MRM), providing a 

selective and sensitive response. That said, Haung et al. [49] observed a much lower 

response when MRM was applied to perfluorinated alkyl sulfonates and perfluorinated alkyl 

sulfonamides. To achieve a higher response (5–60 times higher), Haung and colleagues 

propose the use of the pseudo-MRM approach.

Avoiding the limited fragmentations of some PFCs in MS/MS mode is important, as is 

circumventing some of the quantification problems arising from co-eluting interferences 

reported in literature. In that regard, Kadar et al. [47] recently proposed a novel strategy for 

quantifying PFCs in human breast milk using high-performance LC (HPLC) coupled to an 

orbital-trap high-resolution (HR) mass spectrometer [60]. The source operates in negative 

ESI mode, and the analyzer records in full-scan mode with a mass resolution of 30,000 

FWHM. This method reaches LODs in the pg/mL range, provides exceptional specificity to 

discriminate the target compounds from potential interferences, and has high repeatability 

(in the range 1–14%).

Atmospheric pressure chemical ionization (APCI) is an appropriate interface for the 

determination of environmental phenols (Table 2), although ESI has also been used. Cooper 

et al. [25] also used this ionization mode for the determination of BDCPP and DPP in urine.

The most recent ionization source for coupling LC to MS is atmospheric pressure 

photoionization (APPI), which is less prone to ion-suppression effects, and, for certain 

compounds (i.e. TCS), achieves higher sensitivity than ESI and APCI [35]. In general, the 

use of a dopant is required for ionization or enhancement of the ionization yield, as in the 

determination of environmental phenols and parabens in serum [35].

4. Occurrence in human specimens

In recent years, researchers have directed growing attention both toward biomonitoring 

studies of the general population and toward targeted studies on segments of the population 

that might have the highest exposures. Table 3 shows some relevant recent studies of 

biomarkers of exposure to emerging pollutants in different countries and population groups. 

Table 3 shows that average concentrations of phthalate urinary biomarkers range from a few 

to several hundred ng/mL. These studies have revealed widespread exposure to several 

phthalates whose metabolites have been detected frequently in the studied populations.

In the general population, some parabens (e.g., methyl paraben and propyl paraben) could be 

detected in almost all the urine samples studied (see Table 3), with average concentrations 

(free plus conjugated) in the range 10–50 ng/mL. In general, ethyl paraben, butyl paraben, 

and benzyl paraben were detected less frequently (30–50%), with concentrations lower than 

1 ng/mL.

The presence of synthetic musks has been studied mainly in breast milk. Polycyclic musks 

are detected more frequently and at higher concentrations than nitro musks. Galaxolide is by 

far the most common of the polycyclic musks. Galaxolide could be detected in almost all the 
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samples studied (plasma and breast milk) at average concentrations around 60 ng/g lipid. 

Tonalide has been reported with frequencies higher than 50%.

BPA, TCS, and BP-3 are three of the most studied environmental phenols. Exposure to BPA 

is widespread, with detection frequencies in several of the studies generally higher than 95% 

and average concentrations of few μg/L (see Table 3). These data and the relatively short 

half-life (~6 h) of BPA suggest that continual exposure to BPA is mainly through diet.

OPFRs are mostly measured in blood and urine. Additional research is needed to 

characterize the levels of the most relevant compounds from groups of people representing 

the general population. Apart from the analysis of some metabolites, Sundkvist et al. [68] 

monitored the presence of 11 parent compounds in pooled human-milk samples from 

Sweden. Eight compounds were present in all nine pooled samples, with median 

concentrations of 4.3–45 ng/g lipid.

Serum levels of PFCs tend to reflect cumulative exposure over several years. Exposure in 

the general population is widespread, with frequency of detection near 100% for some 

compounds (e.g., PFOS, PFOA, PFHxS, and perfluorononanoate) (Table 3). Fromme et al. 

[69] recently published a complete review on internal exposure to PFCs of the general 

population in different countries.

5. Conclusions

As interest grows in the value of biomonitoring for assessing human exposure to emerging 

pollutants, demand increases for analytical procedures to identify and to quantify a wide 

range of biomarkers in biological specimens. Within this field, the multi-analyte methods 

able to determine multiple compounds of the same class (e.g., musk fragrances, phthalates, 

PFCs, and OPFRs) are common. However, the multi-analyte, multi-class methods are less 

frequent than in other fields (e.g., environmental monitoring). This could be a future trend in 

this area of analytical chemistry.

Sample preparation is dominated by SPE, with polymeric materials replacing the 

conventional silica-bonded sorbents. Biomonitoring in epidemiologic risk assessment or in 

toxicological studies entails the analysis of a large number of samples, which requires high-

throughput analytical techniques. One general trend for these types of study is the 

development of on-line techniques for increasingly automated and rapid analyses.

LC-MS/MS is the prevailing technique for quantifying and confirming the biomarkers of 

environmental phenols and industrial chemicals in biological matrices. Although ESI in 

negative mode is the most widely used ionization mode, APCI in negative mode is 

frequently employed, mainly for environmental phenols and parabens. As for detection, 

QqQ operating in SRM mode is used most often, as it offers the required sensibility, 

selectivity, and dynamic range for the determination and the quantification of polar 

metabolites with excellent accuracy and precision. For the less polar musk fragrances, GC-

MS is the most frequently used technique.
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Although HR-full-scan analysis has scarcely been used to date, we expect its increasing 

application in this field, mainly for wide-range accurate-mass screening of biomarkers. 

Recent advances in LC-HRMS using time-of-flight (ToF) or Orbitrap analyzers would 

provide a very suitable alternative to QqQ instruments. The high resolving power (>25,000–

100,000 FWHM) and mass accuracy (<5 ppm) of these instruments allow the screening of 

targeted, as well as untargeted, analytes. Also, the capacity to maximize the information 

from a sample (full scan) allows retrospective analysis. However, identification and 

confirmation criteria require international standardization.
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Figure 1. 
Scheme of human biomonitoring and the analytical methods (Phat, Phthalates; PFCs: 

Perfluorinated compounds; OPFRs, Organophospate flame retardants; PCPs, Personal-care 

products).
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Figure 2. 
Percentage of analytical studies using LC and GC techniques for the biomarkers of the 

different pollutants (studies published 2005–2011; number of studies considered = 53).
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Table 1

Biomarkers of exposure to emerging compounds and their parent compounds

Biomarker
[Formula name (Name, Other names, trade names). 
Abbreviation. (CAS RN)]

Parent (CAS RN) Some sources and 
pathways of exposures

Human specimen

1. Personal care products (PCP)

1.1. Synthetic musk fragrances Dermal contact: 
deodorants, shampoos, 
detergents, washing 
and cleaning agents, 
fabric softeners

B, S, P, HM

Polycyclic musks

1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[l]-2-
benzopyran (Galaxolide). HHCB. (1222-05-5)

*

7-Acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene 
(Tonalide). AHTN. (1506-02-1)

*

4-Acetyl-1,1-dimethyl-6-tert-butylindane (Celestolide). ADBI. 
(13171-00-1)

*

5-Acetyl-1,1,2,6-tetramethyl-3-isopropyl-indane (Traseolide). ATII. 
(68140-48-7)

*

6-Acetyl-1,1,2,3,3,5-hexamethyllindane (Phantolide). AHMI 
(15323-35-0)

*

HHCB-lactone (HHCB-l) HHCB

Nitro musks

1-Tert-butyl-3,5-dimethyl-2,4,6-trinitrobenzene (Musk xylene). MX 
(81-15-2)

*

4-Tert-butyl-2,6-dimethyl-3,5-dinitroacetophenone (Musk ketone). 
MK (81-14-1)

*

1,1,3,3,5-Pentamethyl-4,6-dinitroindan (Musk moskene). MM 
(116-66-5)

*

4-Ter-butyl-3-methoxy-2,6-dinitrotoluene (Musk ambrette). MA 
(123-69-3)

*

1-Ter-butyl-3,4,5-trimethyl-2,6-dinitrobenzene (Musk tibetene). MT 
(145-39-1)

*

1.2. Antimicrobials and Preservatives U

– Dermal 
contact: 
use of 
PCP 
containing 
TCS, 
TCC and 
Parabens.

– Ingestion 
(parabens)

2,4,4′-Trichloro-2′-hydroxydiphenyl ether (Triclosan, Irgasan DP 
300, Microban B). TCS. (3380-34-5)

*

3,4,4′-Trichlorocarbanilide (Triclocarban). TCC. (101-20-2) *

Methyl 4-hydroxybenzoate (Methylparaben).MP. (99-76-3) *

Ethyl 4-hydroxybenzoate (Ethylparaben).EP. (120-47-8) *

n-Propyl 4-hydroxybenzoate (n-Propylparaben).PP. (94-13-3) *

n-Butyl 4-hydroxybenzoate (n-Butylparaben).BP. (94-26-8) *
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Biomarker
[Formula name (Name, Other names, trade names). 
Abbreviation. (CAS RN)]

Parent (CAS RN) Some sources and 
pathways of exposures

Human specimen

Benzyl 4-hydroxybenzoate (Benzylparaben).BzP. (94-18-8) *

1.3. UV filters Dermal application: 
sunscreens and 
cosmetic products

U

(2-Hydroxy-4-methoxyphenyl)(phenyl)methanone (Benzophenone-3, 
Oxybenzone, HMB). BP-3 (131-57-7)

5-Benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid [2-Hydroxy-4-
Methoxy-5-sulfonylbenzophenone]. BP-4

2,4-Dihydroxyphenyl)(phenyl)methanone (2,4-
Dihydroxibenzophenone, Aduvex 12). DHB, BP-1

BP-3

Bis(2,4-dihydroxyphenyl)methanone. BP-2 BP-3

(2-Hydroxy-4-methoxyphenyl)(2-hydroxyphenyl)methanone, [2,2′-
dihydroxy-4-methoxybenzophenone, Dioxybenzone, BP-8]. DHMB 
(131-53-3), BP-8 Phenyl(2,3,4-trihydroxyphenyl)methanone, [2,3,4-
Trihydroxybenzophenone].THB

BP-3

1.4. Insect repellents Dermal contact and 
inhalation of aerosol 
formulations

U

N,N-diethyl-3-methylbenzamide, [DEET].DEET. (134-62-6)

N-ethyl-3methylbenzamide. ET DEET

N,N-diethyl-3-(hydroxymethyl)benzamide. DHMB
3-(Diethylcarbamoyl)benzoic acid. DCB.
Bayrepel (119515-38-7)

DEET

2. Industrial chemicals

2.1. Organophosphate flame retardants (OPFRs) Ingestion of 
contaminated foods
Inhalation of 
contaminated indoor 
and outdoor air

U

Bis(1,3-dichloro-2 propyl) phosphate. BDCPP TDCPP, tris(1,3-dichloro-2-propyl) 
phosphate (13674-87-8

Diphenyl phosphate. DPP TPP, Triphenyl phosphate (115-86-6)

Bis-2 chlorethylphosphate. BCEP TCEP, tris(2-chlorethyl)phosphate (115-96-8)

Di-m-cresylphosphate. DmCP TmCP, tri-m-cresylphosphate

Di-p-cresylphosphate. DpCP TpCP, tri-p-cresylphosphate

Di-b-butyl phosphate. DBP TBP, Tri-n-butylphosphate

Bis(2-chloropropyl)phosphate. BCPP TCPP, Tris(2-chlropropyl)phosphate

2.2. Phthalates Exposure through diet 
and life-style dependent 
pathways (e.g. 
cosmetics, body care 
products)

U

Monoethyl phthalate. MEP (2306-33-4) Diethyl phthalate (DEP) (84-66-2)

Mono-n-butyl phthalate. MBP (131-70-04) Dibutyl phthalate (DBP)(84-74-2)

Mono-isobutyl phthalate. MiBP Dibutyl phthalate (DBP)(84-74-2)

Monocyclohexyl phthalate. MCHP (7517-36-4) Dicyclohexyl phthalate (DCHP (84-61-7)

Mono(2-ethyl-5-oxohexyl) phthalate. MEOHP Di-2-ethylhexyl phthalate (DEHP) (117-81-7)

Mono(2-ethyl-5-hydroxyhexyl) phthalate. MEHHP Di-2-ethylhexyl phthalate (DEHP) (117-81-7)

Mono(2-ethyl-5-carboxypentyl) phthalate. MECPP (40809-41-4) Di-2-ethylhexyl phthalate (DEHP) (117-81-7)

Mono(2-ethylhexyl) phthalate. MEHP (4376-20-9) Di-2-ethylhexyl phthalate (DEHP) (117-81-7)
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Biomarker
[Formula name (Name, Other names, trade names). 
Abbreviation. (CAS RN)]

Parent (CAS RN) Some sources and 
pathways of exposures

Human specimen

Monobenzyl phthalate. MBzP (2528-16-7) Benzylbutyl phthalate (BzBP) (85-68-7)

Mono-methyl phthalate. MMP (4376-18-5) Dimethyl phthalate (DMP) (131-11-3)

Mono (3-carboxypropyl) phthalate. MCPP Di-n-octyl phthalate (DOP) (117-84-0)

Mono-n-octyl phthalate. MOP Di-n-octyl phthalate (DOP) (117-84-0)

Monocarboxy-isooctylphthalate. MCOP Di-isononylphthalate (DiNP) (28553-12-0)

Mono-isononyl phthalate. MiNP Di-isononylphthalate (DiNP) (28553-12-0)

Monooxo-isononyl phthalate. Oxo-MiNP Di-isononylphthalate (DiNP) (28553-12-0)

Monocarboxy-isononyl phthalate. MCNP Di-isononylphthalate (DiNP) (28553-12-0)

2.3. Perfluorinated compounds (PFCs) Diet
Inhalation of outdoor 
and indoor air

B,S,P,HM

Perfluorooctane sulfonamide. PFOSA *

N-methyl-perfluorooctane sulfonamide. Me-PFOSA *

N-ethyl-perfluorooctane sulfonamide. Et-PFOSA *

2-(N-methyl-perfluorooctanesulfonamido) ethanol. Me-PFOSA-EtOH *

2-(N-ethyl-perfluorooctanesulfonamido) ethanol. Et-PFOSA-EtOH *

2-(N-methyl-perfluorooctanesulfonamido) acetic acid. Me-PFOSA-
AcOH

*

2-(N-ethyl-perfluorooctanesulfonamido) acetic acid. Et-PFOSA-
AcOH

*

Perfluorobutane sulfonate. PFBuS *

Perfluorohexane sulfonate. PFHxS *

Perfluorooctane sulfonate. PFOS *

Perfluoropentanoate. PFPeA *

Perfluorohexanoate. PFHxA *

Perfluoroheptanoate. PFHpA *

Perfluorooctanoate. PFOA *

Perfluorononanoate. PFNA *

Perfluorodecanoate. PFDeA *

Perfluoroundecanoate. PFUA *

Perfluorododecanoate. PFDoA *

Perfluoro-7-methyl octanoic acid. i,p-PFNA *

2.4. Environmental phenols (alkyl phenols (AP) and chlorophenols 
(CP))

* Diet (AP), and through 
chlorinated drinking 
water or air inhalation 
(CPs)

U

4,4′-Propane-2,2-diyldiphenol (Bisphenol A). BPA *

Ortho-phenyl phenol. oPP *

2,4-Dichlorophenol. 2,4-DCP 2,4-Dichlorophenoxyacetic acid (2,4-D) and 
other chlorophenols

2,5-Dichlorophenol. 2,5-DCP 1,4-Dichlorobenzene

2,4,5-Trichlorophenol. 2,4,5-TCP Several organochlorine chemicals, including 
hexachlorobenzene and 
hexachlorocyclohexanes
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Biomarker
[Formula name (Name, Other names, trade names). 
Abbreviation. (CAS RN)]

Parent (CAS RN) Some sources and 
pathways of exposures

Human specimen

2,4,6-Trichlorophenol. 2,4,6-TCP Several organochlorine chemicals, including 
hexachlorobenzene and 
hexachlorocyclohexanes

*
The biomarker is the parent compound free o conjugated; B: Whole blood; S: Serum; P: Plasma; U: Urine; HM: Human milk.
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